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The recent advancements of social behavioral neuroscience

are unprecedented. Through manipulations targeting neural

circuits, complex behaviors can be switched on and off, social

bonds can be induced, and false memories can be ‘incepted.’

Psychiatry, however, remains tethered to concepts and

techniques developed over half a century ago, including purely

behavioral definitions of psychopathology and chronic, brain-

wide pharmacological interventions. Drawing on recent animal

and human research, we outline a circuit-level approach to the

social brain and highlight studies demonstrating the

translational potential of this approach. We conclude by

suggesting ways both clinical practice and translational

research can apply circuit-level neuroscientific knowledge to

advance psychiatry, including adopting neuroscience-based

nomenclature, stratifying patients into diagnostic subgroups

based on neurobiological phenotypes, and pharmacologically

enhancing psychotherapy.

Addresses
1Center for Translational Social Neuroscience, Silvio O. Conte Center for

Oxytocin and Social Cognition, Yerkes National Primate Research

Center, Emory University, Atlanta, GA 30329, USA

2Department of Psychiatry and Behavioral Sciences, Emory University

School of Medicine, Atlanta, GA 30322, USA

Corresponding author: Young, Larry J (lyoun03@emory.edu)

Current Opinion in Neurobiology 2020, 68:xx–yy

This review comes from a themed issue on The social brain

Edited by Hailan Hu and Michael Brecht

https://doi.org/10.1016/j.conb.2020.11.007

0959-4388/ã 2018 Elsevier Inc. All rights reserved.

Introduction: the gulf between psychiatry and
neuroscience
Mental illness is a leading cause of global disease burden, yet

progress in treating psychiatric disorders has largely stalled

since the advent of modern psychopharmacology  in the

1950s and 1960s. Currently, psychiatric disorders are treated

by modulating neurotransmitter activity throughout the

brain via a handful of cellular and molecular targets. The

majority of ‘new’ psychiatric pharmaceuticals are variations

of old drugs with marginal improvements rather than drugs
www.sciencedirect.com 
with novel mechanisms of action. This homogeneous reper-

toire of pharmaceuticals is ill-matched for treating heteroge-

neous psychiatric disorders. For example, depression is

diagnosed behaviorally by the presence of at least five of

nine possible symptoms and is typically treated with selec-

tive serotonin reuptake inhibitors (SSRIs). Two patients

may therefore share the same diagnosis while having only

a single symptom in common, yet divergent behavioral

presentations often have different neurobiological etiologies

and responses to treatment [1,2��]. Furthermore, as first-line

treatment for at leastninedifferentdiagnoses,SSRIsserveas

a sort of modern-day panacea for a myriad of conditions

ranging from depression and panic disorders to bulimia and

premature ejaculation. Although the focus on behavioral

diagnoses and chronic, brain-wide neurotransmitter manip-

ulation was a great advancement in the 1950s, today it is

perhaps psychiatry’s greatest limitation.

This clinical stagnation contrasts with the unprecedented

progress of behavioral neuroscience. In rodents, it is

possible to control even complex social behaviors —

monogamous pair bond formation can be biased [3],

distinct parental behaviors can be switched on and off

[4��], and false social memories can be ‘incepted’ [5].

These advances have been enabled by techniques like

optogenetics and chemogenetics [6,7], viral vector-medi-

ated transgenics [8], and Cre-dependent expression sys-

tems [9] that enable the activation or inhibition of specific

neural circuits and cell types with temporal precision.

Understanding the circuit components regulating social

behavior is a key element of the National Institute of

Mental Health Strategic Plan. A challenge for psychiatry

is translating these circuit-level discoveries of today into

the transformative interventions of tomorrow.

Many psychiatric disorders manifest with disruptions in

social cognition and behavior, and there have been great

advances in understanding the neural circuit mechanisms

regulating social behavior in animal models. Here, we

discuss select examples of how animal research has

informed our conception of the social brain, examine

human research offering insight into the translational

potential of this conception, and outline steps for how

clinical practice can be improved by acting on the current

state of neuroscientific knowledge.

Conception of the social brain from animal
research
The social brain evolved to facilitate adaptive processes

from reproduction to cooperation and communication,
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ultimately enabling human civilization. Despite tremen-

dous variation in social behavior across species, there is

remarkable conservation in the neuromodulators regulat-

ing social behaviors. Oxytocin and vasopressin, for exam-

ple, modulate social behaviors across vertebrate taxa,

from flocking in birds to pair-bonding in voles. Interspe-

cies and intraspecies variation in social behavior is related

to variation in the distribution of oxytocin and vasopressin

receptors in the brain [10,11]. This variation in brain

receptor distribution is determined by sequence variation

in the receptor genes [12,13]. In prairie voles, for instance,

such sequence variation determines individual variation

in striatal oxytocin receptor density [12], which predicts

resiliency to early life neglect with respect to adult social

bonding [14].

In mammals, social information is first processed by sensory

areas including olfactory bulb for olfaction; superior colli-

culus, pulvinar, and primary visual cortex for vision; and

primary auditory cortex for hearing. These regions express

oxytocin receptors in various species, depending on the

sensory pathways most relevant for a particular species’

social interactions [11]. In sensory pathways, oxytocin

signaling increases the salience of social stimuli by modu-

lating neuron excitability and facilitates the flow of social

information across the brain [15]. This has been hypothe-

sized to occur in pulvinar in primates [11] and shown to

occur in olfactory bulb in rodents, where oxytocin enhances

social discrimination by increasing the signal-to-noise ratio

of olfactory bulb output [16]. Likewise, oxytocin enhances

the auditory cortex response to pup calls to promote mater-

nal nurturing [17].

Socio-sensory information is subsequently conveyed to a

network of subcortical structures including the amygdala,

which is involved in the integration of information from

multiple sensory modalities [18] (Figure 1). In rodents,

olfactory information is transmitted to the medial amyg-

dala, where oxytocin-dependent signaling is necessary for

social recognition [10,19]. Projections from the medial

amygdala to basolateral amygdala may integrate valence

with social cues [20]. The medial and basolateral amyg-

dala both project to the hippocampus, which expresses

oxytocin receptors and is necessary for social recognition

and memory formation [5,11]. The hippocampus projects

back to basolateral amygdala and nucleus accumbens

(NAc), where oxytocinergic, dopaminergic, and seroto-

nergic innervation from the hypothalamic paraventricular

nucleus, ventral tegmental area, and dorsal raphe nucleus,

respectively, are necessary for social reward learning

[21,22]. The NAc integrates social memories and contex-

tual information from hippocampus, goal-directed infor-

mation from prefrontal cortex (PFC), and emotional

valence from amygdala to influence an organism’s behav-

ioral output through its projections to the ventral palli-

dum [23]. For more details on the circuitry underlying

social behavior, see Refs. [10,24].
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The ability to manipulate social behaviors through circuit

modulation is remarkable. By activating or inhibiting

specific subsets of galanin-positive neurons in the medial

preoptic area, Kohl et al. [4��] inhibited infanticidal

behavior in males and increased pup grooming in females

(projections to periaqueductal gray), increased parental

motivation to interact with pups (projections to ventral

tegmental area), and inhibited male–male aggression

(projections to medial amygdala). Okuyama et al. [5]

identified a social engram, or collection of cells encoding

a memory trace for an individual conspecific, in ventral

CA1 of hippocampus; by activating this engram while

administering a foot shock, they incepted a false memory

that made the mice fearful of that conspecific. Inhibiting

or stimulating the PFC-to-NAc projections of D1 dopa-

mine receptor-expressing neurons impaired or restored,

respectively, social recognition memories in mice [25],

while stimulating PFC projections to NAc induced pair-

bonding in prairie voles without mating [3]. Additionally,

oxytocin signaling in insular cortex, central amygdala, and

anterior cingulate cortex modulates emotion detection

and responses to social affect of conspecifics [26–28].

These are but a few studies from a growing body of

literature that demonstrates the ability of distinct neural

circuits to robustly control specific behaviors and illus-

trates the potential of treating psychiatric disorders from a

circuit perspective. Indeed, accumulating evidence from

mouse models of autism suggests that stimulating oxyto-

cin neurons can rescue social deficits. Cntnap2 knockout

mice show deficits in social behavior and reduced num-

bers of oxytocin neurons, while chemogenetic stimulation

of oxytocin neurons or pharmacologically evoked release

of endogenous oxytocin rescues the deficits [29]. Addi-

tionally, Nlgn3 knockout mice show impaired social nov-

elty preference due to decreased oxytocin signaling in

ventral tegmental area [30�]. Both neural and behavioral

deficits can be rescued with a MAP kinase-interacting

kinase inhibitor, providing a novel translational target that

affects oxytocin signaling [30�].

Insights from human research
The noninvasive nature of most human research limits its

mechanistic insights. However, recent work using genetic

analyses, fMRI, and intranasal oxytocin (IN-OT) admin-

istration supports the circuit-level conception of the social

brain emerging from animal research and provides insight

into the heterogeneity of human populations. Quintana

et al. [31] mapped the mRNA of oxytocin pathway genes

throughout human brains and found the highest expres-

sion in olfactory bulbs and pallidum, high expression in

hypothalamus, thalamus, caudate, and putamen, and

more moderately elevated expression in amygdala, ante-

rior cingulum, and hippocampus. Additionally, there is

strong correlation between the expression of the oxytocin

receptor gene (OXTR) and dopamine receptors (espe-

cially D2R) and muscarinic acetylcholine receptors.
www.sciencedirect.com
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Figure 1
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Select pathways involved in social cognition and associated references suggesting interventional potential.

Recent studies in both animals and humans have identified pathways in the social brain that can be modified with behavioral consequences and

thus merit further investigation for therapeutic targeting. These pathways include sensory input to the amygdala (AMG) [11] and paraventricular

nucleus of the hypothalamus (PVN) [57]; PVN projections to AMG [24], ventral tegmental area (VTA) [15,26], and anterior cingulate cortex (ACC)

[23]; reciprocal connections between prefrontal cortex (PFC) and both AMG [33,43] and ACC [44]; ACC projections to AMG [43]; projections to

nucleus accumbens (NAc) from PFC [20,21,33,45], hippocampus (HPC) [14], and the dorsal raphe nuclei (DRN) [16].
Comparing OXTR expression and fMRI activity associ-

ated with cognitive states revealed a robust correlation

between OXTR expression and activity maps for ‘sexual’,

‘motivation’, ‘incentive’, and ‘anxiety’ cognitive states.

These data suggest the oxytocin systems in humans and

animals are similar in their anatomical distribution, inter-

action with other neurotransmitter systems, and role in

regulating socioemotional processes.

Similar to findings in prairie voles, multiple studies sug-

gest that genetic variation in human OXTR contributes to

variation in behavior. Single nucleotide polymorphisms in

OXTR are associated with impaired social memory [32],

behavior in romantic relationships [33], and autism diag-

nosis [34]. Polymorphisms in OXTR also contribute to

sexually dimorphic alterations in functional connectivity
www.sciencedirect.com 
between the NAc and PFC [35,36]. Hypermethylation at

specific sites in OXTR is associated not only with autism

spectrum disorders (ASD), but with distinct ASD behav-

ioral phenotypes [37�]. Moreover, these distinct clinical

profiles and epigenetic biomarkers are also associated

with alterations in resting state connectivity between

areas critical for social cognition and behavior, such as

the NAc, PFC, amygdala, and cingulate cortex.

The effects of IN-OT have been researched extensively

since studies showed it promotes prosocial behavior and

decreases activity in the amygdala and neural circuits

associated with fear [38]. A recent meta-analysis of

82 studies including 3950 subjects confirms that the

amygdala is the brain region most likely to be modulated

by IN-OT followed by the insula, cingulate cortex,
Current Opinion in Neurobiology 2021, 68:1–8
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inferior frontal and orbitofrontal cortices, midbrain and

basal ganglia, temporal gyrus, precuneus, and occipital

cortex [39]. However, results across studies are highly

heterogeneous and vary based on the population and

context of the study. Divergent responses to IN-OT have

been associated with OXTR polymorphisms, gender, per-

sonality traits, attachment style, and underlying psycho-

pathology [39,40]. Notably, IN-OT enhances the coordi-

nation of corticostriatal networks involved in social

emotive, motivational, and communicative processes

[41], which parallels findings in voles that show oxytocin

enhances correlated activity across a network of social

brain regions involved in pair-bonding [42]. Similarly, in

pair-bonded men, IN-OT enhances the perceived attrac-

tiveness of their female partners’ faces but not that of

other equally attractive female faces [43]; in voles,

pharmacologically increased oxytocin signaling enhances

partner preference [44]. For reviews of lessons learned

and controversies of IN-OT research, see Refs. [45,46].

In psychiatric cohorts including patients with ASD, bor-

derline personality disorder, social anxiety disorder, post-

traumatic stress disorder (PTSD), and schizophrenia, IN-

OT often exerts a ‘normalizing’ effect on the amygdala,

increasing or decreasing activity to align with that

observed in healthy controls [39]. The possibility of using

oxytocin to modulate specific neural circuits based on

context and individual characteristics is particularly

intriguing. In one study using resting state fMRI, females

with PTSD displayed increased connectivity between

the right basolateral amygdala and right anterior cingulate

cortex while males with PTSD displayed decreased

activity between the right centromedial amygdala and

right ventromedial PFC [47]. In these subjects, IN-OT

restored functional connectivity to levels observed in

healthy controls and also decreased subjective experi-

ences of anxiety and nervousness. Six-weeks of IN-OT

treatment in ASD patients rescued social reciprocity

deficits and enhanced task-dependent functional connec-

tivity between anterior cingulate cortex and PFC [48]. In

a separate study, acute IN-OT enhanced functional con-

nectivity between PFC and NAc while viewing biological

motion [49]. There are, however, failures of replication in

well-powered IN-OT clinical trials for ASD that urge

caution in supporting IN-OT alone as a therapy [50].

Taken together, human studies highlight the neural

heterogeneity of the population and further demonstrate

the potential of approaching the social brain, psychiatric

disorders, and interventions from a circuit perspective.

Translational implications
Psychiatry is mired in the psychopharmacological tech-

niques of the 1950s and must move beyond nonspecific

behavioral diagnoses and chronic, brain-wide pharmaco-

logical interventions to adopt more neuroscience-based

diagnoses and targeted interventions. The first step is

embracing neuroscience-based nomenclature, a system of
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classifying drugs based on pharmacological profile and

neurobiological mechanism rather than diagnostic or

behavioral indication [51]; clinical language that omits

the neurobiological basis of diseases and treatments pre-

cludes the incorporation of neuroscientific precision into

clinical practice. Similarly, the neurobiological basis of

psychiatric disorders at the level of circuits should receive

increased emphasis in the education of patients and

medical trainees. The next generation of psychiatrists

should be trained in both the behavioral pharmacological

techniques employed today and the circuit neurophysi-

ology that will drive clinical practice in the future.

Regarding patients, it is worth considering that recasting

psychiatric conditions in terms of ‘misfiring circuits’

rather than disorders of behavior might reduce stigma,

a key barrier to seeking treatment [52].

A circuit-based approach also suggests immediate solu-

tions for addressing the glaring mismatch between the

heterogeneity of psychiatric disorders and the homoge-

neity of both diagnoses and treatments. To improve the

precision of psychiatric medicine, patients within diag-

nostic categories must be subdivided by finding correla-

tions between behavioral phenotypes, neural activity,

genetic markers, and treatment responsiveness [1,2��

,37�,40]. Simultaneously, treatments’ circuit-level neural

effects must be studied in addition to their behavioral

effects so that more precise diagnoses can be matched

with more precise treatment options. Doing so should be

a top priority for psychiatry as it has been demonstrated

unambiguously to be possible [1,2��,53] and the potential

benefits are immense [54,55]. Additionally, more cross-

species research, including reverse translation from

humans to animal models, would help elucidate the

mechanisms underlying clinical interventions and maxi-

mize the translational value of preclinical studies [56,57].

Psychotherapy is an alternative and effective means of

treating mental illness that alters activity within neural

circuits by harnessing the brain’s inherent capacity for

experience-dependent plasticity [58]. As pharmacology-

based and psychotherapy-based interventions are inde-

pendently capable of modulating circuit-level neural

activity, pharmacologically enhanced psychotherapy

would seem an obvious opportunity to target specific

circuits more effectively and potentially reduce the need

for chronic pharmacological therapy [59]. Promising

results have been obtained by enhancing psychotherapy

with methylenedioxymethamphetamine (MDMA; phase

three clinical trial NCT03537014 is currently assessing

MDMA-assisted psychotherapy for PTSD), oxytocin [

60], L-DOPA [61], and other compounds (for review,

see Ref. [59]). As therapeutic information in psychother-

apy comes from a social source (the therapist), concur-

rently activating the oxytocin system is especially prom-

ising for disorders with social deficits like ASD. In

rodents, social stimuli, including social touch, robustly
www.sciencedirect.com
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Figure 2
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Suggested steps for advancing psychiatric practices based on recent progress in neuroscience.
activate hypothalamic oxytocin neurons and enhance

social motivation, effects that could be utilized in psy-

chotherapy [62,63�]. Oxytocin-enhanced therapy would

have the combined benefits of increasing the salience of

information coming from the therapist [64,65], promoting

synaptic plasticity [66], and facilitating learning by mod-

ulating circuit-level neural activity [37�,67]. Despite the

promising results of augmenting psychotherapy for

PTSD with IN-OT [60], no studies have been reported

for ASD; to date, most research on IN-OT interventions

for ASD has involved administrations independent of

context. Since oxytocin enhances the salience of social

stimuli, we suggest that context-dependent IN-OT

administration, that is preferred therapy, may be a more

beneficial intervention for ASD patients than the daily,

context-independent administration schedules typical of

other pharmacotherapies.

The circuit-based conception of the brain, psychopathol-

ogies, and treatments also suggests new directions for

translational research. For instance, a circuit-targeted

approach to manipulating oxytocin signaling increases

the feasibility of resetting transcriptional or translational

abnormalities [30�], altering the course of neurodevelop-

mental disorders through interventions during develop-

mental sensitive periods [68], or reopening critical periods

in adults to enable new social learning [69��]. Moreover,

single-cell sequencing has the potential to identify cell-

type-specific molecular targets for the development of

new pharmaceuticals that would affect specific neural

circuits rather than the entire brain [70]. However,

bypassing the blood–brain barrier remains a perennial

problem for pharmacological interventions including

IN-OT; the effect sizes in most IN-OT studies are small

[46] and there are questions surrounding its ability to cross

the blood–brain barrier and diffuse to subcortical
www.sciencedirect.com 
structures [71,72]. We predict that the evolution of oxy-

tocin interventions will move beyond administering exog-

enous oxytocin to second-generation strategies utilizing

pharmaceuticals like melanocortin receptor agonists that

potentiate endogenous oxytocin signaling much like how

SSRIs and L-DOPA are used to potentiate serotonin and

dopamine signaling [73]. Beyond the oxytocin system,

emerging technologies like transcranial magnetic stimu-

lation, deep brain stimulation, and the application of

focused ultrasound to circumvent the blood–brain barrier

are enabling more targeted interventions. Such innova-

tions are critical as while psychiatric precision will always

lag behind neuroscientific precision due to ethical and

technological constraints, the advancement of psychiatry

requires that we develop ways to approximate in humans

the circuit manipulations that have proven so efficacious

in animal research.

Concluding remarks
As research on the social brain has demonstrated, the

potential of incorporating circuit-level approaches into

the diagnosis and treatment of psychiatric disorders is no

longer theoretical — it is manifestly evident. Moreover,

we presently possess the technological capabilities and

scientific understanding required to begin implementing

this approach. The sooner circuit-level approaches are

embraced, the sooner the field of psychiatry can move

beyond twentieth-century behavioral pharmacology and

into twenty-first-century precision medicine (Figure 2).
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Dölen G: Oxytocin-dependent reopening of a social reward
learning critical period with MDMA. Nature 2019, 569:116-120.
Current Opinion in Neurobiology 2021, 68:1–8 
Social reward learning was shown to occur during a developmental
critical period in mice, and this critical period can be reopened with
MDMA. This MDMA-induced reopening was mediated by oxytocin-
dependent synaptic plasticity in the nucleus accumbens, facilitated
new social learning, and had lasting behavioral effects, which collectively
suggest mechanisms that may underlie the efficacy of MDMA-assisted
psychotherapy for PTSD.

70. Romanov RA, Zeisel A, Bakker J, Girach F, Hellysaz A, Tomer R,
Alpár A, Mulder J, Clotman F, Keimpema E et al.: Molecular
interrogation of hypothalamic organization reveals distinct
dopamine neuronal subtypes. Nat Neurosci 2017, 20:176-188.

71. Yamamoto Y, Liang M, Munesue S, Deguchi K, Harashima A,
Furuhara K, Yuhi T, Zhong J, Akther S, Goto H et al.: Vascular
RAGE transports oxytocin into the brain to elicit its maternal
bonding behaviour in mice. Commun Biol 2019, 2:76.

72. Higashida H, Hashii M, Tanaka Y, Matsukawa S, Higuchi Y,
Gabata R, Tsubomoto M, Seishima N, Teramachi M, Kamijima T
et al.: CD38, CD157, and RAGE as molecular determinants for
social behavior. Cells 2019, 9.

73. Young LJ, Barrett CE: Neuroscience. Can oxytocin treat
autism? Science 2015, 347:825-826.
www.sciencedirect.com

http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0320
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0320
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0320
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0320
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0325
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0325
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0330
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0330
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0330
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0330
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0335
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0335
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0335
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0335
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0340
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0340
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0340
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0340
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0345
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0345
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0345
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0350
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0350
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0350
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0350
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0355
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0355
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0355
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0355
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0360
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0360
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0360
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0360
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0365
http://refhub.elsevier.com/S0959-4388(20)30173-2/sbref0365

	Translational opportunities for circuit-based social neuroscience: advancing 21st century psychiatry
	Introduction: the gulf between psychiatry and neuroscience
	Conception of the social brain from animal research
	Insights from human research
	Translational implications
	Concluding remarks
	Author contributions
	Conflict of interest statement
	References and recommended reading
	Acknowledgements


